metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dicyclohexylammonium trimethylbis-(hydrogen phenylphosphonato)stannate(IV)

Tidiane Diop,^a Libasse Diop,^a* Cheikh A. K. Diop,^a Kieran C. Molloy^b and Gabriele Kociok-Köhn^b

^aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England

Correspondence e-mail: dlibasse@gmail.com

Received 28 October 2011; accepted 20 November 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.007 Å; R factor = 0.047; wR factor = 0.124; data-to-parameter ratio = 20.4.

In the title compound, $(C_{12}H_{24}N)[Sn(CH_3)_3(C_6H_6O_3P)_2]$, the SnMe₃ residues are axially coordinated by two monodentate [PhPO₃H]⁻ anions, leading to a trigonal-bipyramidal geometry for the Sn^{IV} atom. The two $[SnMe_3(PhPO_3H)_2]^-$ anions in the unit cell are associated into infinite chains along the *a* axis by O-H···O hydrogen bonds involving the hydroxy group of the hydrogen phenylphosphonate ion. The chains interact with one another *via* O-H···O hydrogen bonds along the *c* axis. These networks of anions assemble with the dicyclohexylammonium ion through N-H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For related organotin derivatives, see: Weakley (1976); Molloy *et al.* (1981); Evans & Karpel (1985); Gielen *et al.* (1995); Yin & Wang (2004); Kapoor *et al.* (2005); Zhang *et al.* (2006). For our recent work on the coordination ability of oxyanions, see: Diop *et al.* (2002, 2003); Diallo *et al.* (2009).

Experimental

Crystal data $(C_{12}H_{24}N)[Sn(CH_3)_3(C_6H_6O_3P)_2]$ $M_r = 660.27$

Triclinic, $P\overline{1}$ a = 10.8718 (5) Å

b = 12.7103 (7) A
<i>c</i> = 13.3218 (7) Å
$\alpha = 100.625 \ (3)^{\circ}$
$\beta = 103.687 \ (3)^{\circ}$
$\gamma = 111.996 \ (3)^{\circ}$
$V = 1580.41 (14) \text{ Å}^3$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\rm min} = 0.675, \ T_{\rm max} = 0.833$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.124$ S = 1.097212 reflections 353 parameters 2 restraints

Z = 2Mo K α radiation $\mu = 0.95 \text{ mm}^{-1}$ T = 150 K $0.45 \times 0.30 \times 0.20 \text{ mm}$

21070 measured reflections
7212 independent reflections
6014 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.068$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 1.86$ e Å⁻³ $\Delta \rho_{\rm min} = -1.80$ e Å⁻³

Table 1

Selected bond lengths (Å).

Sn-C1	2.132 (4)	Sn-O1	2.227 (2)
Sn-C2	2.114 (4)	Sn-O4	2.241 (3)
Sn-C3	2.134 (4)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02 - H2 \cdots O6^{i}$ $05 - H5A \cdots O6^{ii}$ $N - H10A \cdots O3$ $N - H10B \cdots O3^{iii}$	0.76 (4) 0.94 (7) 0.89 (2) 0.95 (4)	1.88 (4) 1.67 (7) 1.92 (2) 1.83 (4)	2.642 (4) 2.596 (4) 2.798 (4) 2.759 (4)	178 (7) 169 (6) 169 (4) 165 (4)
Symmetry codes:	(i) $-x + 1, -y$	+1, -z + 1;	(ii) $-x, -y + 1$, -z + 1; (iii)

-x + 2, -y + 2, -z + 1.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2021).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Köhn, G. K. & Molloy, K. C. (2009). Sci. Study Res. 3, 207–212.
- Diop, C. A. K., Bassene, S., Sidibe, M., Sarr, A. D., Diop, L., Molloy, K. C.,

Mahon, M. F. & Toscano, R. A. (2002). *Main Group Met. Chem.* 25, 683–689.
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003).
Appl. Organomet. Chem. 17, 881–882.

- Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gielen, M., Bouhdid, A., Kayser, F., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257.
- Kapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.
- Molloy, K. C., Hossain, M. B., Helm, D. V. D., Cunningham, D. & Zukerman, J. J. (1981). *Inorg. Chem.*, **20**, 2402–2406.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weakley, T. J. R. (1976). Acta Cryst. B32, 2889-2890.
- Yin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411-412.
- Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460-m461.

Acta Cryst. (2011). E67, m1872-m1873 [doi:10.1107/S1600536811049567]

Dicyclohexylammonium trimethylbis(hydrogen phenylphosphonato)stannate(IV)

T. Diop, L. Diop, C. A. K. Diop, K. C. Molloy and G. Kociok-Köhn

Comment

Research on organotin derivatives has been an attractive area because of their numerous applications and their versatile structure (Evans & Karpel, 1985; Kapoor *et al.*, 2005; Zhang *et al.*, 2006; Yin & Wang, 2004; Gielen *et al.*, 1995). In the scope of our research work on the coordination ability of oxyanions (Diop *et al.*, 2002, Diallo *et al.*, 2009; Diop *et al.*, 2003) and our interest to synthesize new organotin derivatives for biological tests, we elucidate here the structure of the title compound, $[C_{15}H_{21}O_6P_2Sn,C_{12}H_{24}N]$ (Fig. 1).

The crystal structure of the molecule is shown in Fig 2: hydrogen bonds between pairs of $[SnMe_3(PhPO_3H)_2]^-$ generate a six membered ring, comprise a honey comb network by virtue of the hydrogen bonds between the ligands as in *catena*-trimethyltin(IV)phenylarsenate, reported by Diop *et al.* (2002).

Each SnMe₃ unit is σ bonded to two [PhPO₃H]⁻ via one negatively charged oxygen atom, leading to a *trans* trigonal bipyramidal environment around the tin centre (Fig. 1). The resulting anions [SnMe₃(PhPO₃H)₂]⁻ are associated through hydrogen bonds OH···O, along the *b* axis into pairs and along the *a* axis to form infinite layers (Fig. 2). The different layers are connected by NH···O hydrogen bonds along the *b* axis. The hydrogen bonds render the P=O and P—O bond distances almost egal (P(1)—O(3)1.506 (3) Å, P(1)—O(1): 1.509 (2) Å, P(1)—O(2): 1.569 (3) Å) while different of those in the parent phenylphosphonic acid PhPO₃H₂ (Weakley, 1976) (1.496 Å for P=O and 1.545 Å for P—OH). The geometry around the phosphorous atom in the ligands is a distorted tetrahedron (O(3)—P(1)—O(1): 115.48°(15), O(1)—P(1)—C(4): 107.03°(15)) owing to steric hindrance. The sum of the C—Sn—C angle is 59.99° and the O(1)—Sn—O(4) angle of 178.24°(9) indicate a nearly perfect *trans* trigonal bipyramidal arrangement with the carbon atoms of the methyl occupying the equatorial positions while the oxygen atoms are on the apical positions. The two Sn—O distances observed here - Sn—O(1) 2.227 (2) Å; Sn—O(4) 2.240 (3) Å - are shorter than the distances reported for(α phenylphosphonato)trimethyltin(IV) by Molloy *et al.* (1981) (2.240 (6) Å and 2.319 (5) Å).

Experimental

 $Cy_2NH_2PhPO_3H$ (*L*) is obtained on mixing dicyclohexylamine with PhPO₃H₂ in water in 1/1 ratio. The title compound has been obtained as white crystalline solid by reacting (*L*) with trimetyltinchloride in ethanol (2/1 ratio *M*. p:170°). Slow solvent evaporation of the solution afforded colorless crystals suitable for x-ray structure determination. All the chemicals (Aldrich) were used without any further purification.

Refinement

All C-bound H-atoms were positioned geometrically and were included in the refinement in the riding model approximation, with U iso~(H) set to 1.2 and 1.5 U~eq~(C). All N- and O-bound H-atoms have been located in the difference Fourier map

and were refined freely. However, H(2) binding to O(2) and H(10A) binding to N had to be restrained with O—H = 0.82 (2) Å and N—H = 0.87 (2) Å.

Figures

Fig. 1. : The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. : Three dimensional structure showing the hydrogen bonds as dotted lines.

Dicyclohexylammonium bis(hydrogen phenylphosphonato)trimethylstannate(IV)

Z = 2

F(000) = 684 $D_{\rm x} = 1.387 \,{\rm Mg}\,{\rm m}^{-3}$

 $\theta = 2.9-27.5^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.45 \times 0.30 \times 0.20 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 47204 reflections

Crystal data
(C ₁₂ H ₂₄ N)[Sn(CH ₃) ₃ (C ₆ H ₆ O ₃ P) ₂]
$M_r = 660.27$
Triclinic, PT
Hall symbol: -P 1
<i>a</i> = 10.8718 (5) Å
<i>b</i> = 12.7103 (7) Å
<i>c</i> = 13.3218 (7) Å
$\alpha = 100.625 \ (3)^{\circ}$
$\beta = 103.687 \ (3)^{\circ}$
γ = 111.996 (3)°
$V = 1580.41 (14) \text{ Å}^3$

Data collection

Nonius KappaCCD diffractometer	7212 independent reflections
Radiation source: fine-focus sealed tube	6014 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.068$
166 2.0 degree images with ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$h = -14 \rightarrow 14$
$T_{\min} = 0.675, T_{\max} = 0.833$	$k = -16 \rightarrow 16$
21070 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.124$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 1.1841P]$ where $P = (F_o^2 + 2F_c^2)/3$
7212 reflections	$(\Delta/\sigma)_{max} < 0.001$
353 parameters	$\Delta \rho_{max} = 1.86 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{min} = -1.80 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn	0.39323 (2)	0.58948 (2)	0.341865 (19)	0.02776 (9)
P1	0.74338 (9)	0.72317 (8)	0.37030 (7)	0.02711 (19)
P2	0.06261 (9)	0.44906 (8)	0.36638 (8)	0.02827 (19)
01	0.6010 (2)	0.7236 (2)	0.3496 (2)	0.0320 (5)
O2	0.7419 (3)	0.6228 (2)	0.4238 (2)	0.0353 (6)
H2	0.807 (5)	0.623 (5)	0.462 (4)	0.070 (18)*
O3	0.8675 (2)	0.8403 (2)	0.4370 (2)	0.0310 (5)
O4	0.1834 (3)	0.4514 (2)	0.3290 (2)	0.0360 (6)
O5	0.0892 (3)	0.5817 (2)	0.4150 (2)	0.0338 (6)
H5A	0.039 (7)	0.585 (6)	0.463 (5)	0.08 (2)*
O6	0.0351 (2)	0.3812 (2)	0.4473 (2)	0.0306 (5)
Ν	0.9314 (3)	1.0380 (3)	0.3600 (2)	0.0291 (6)
H10A	0.906 (5)	0.970 (3)	0.376 (4)	0.043 (12)*
H10B	1.004 (4)	1.092 (4)	0.426 (3)	0.029 (10)*
C1	0.4197 (4)	0.4478 (4)	0.2508 (3)	0.0357 (8)
H1A	0.3304	0.3754	0.2223	0.053*
H1B	0.4921	0.4334	0.2977	0.053*
H1C	0.4488	0.4694	0.1904	0.053*
C2	0.4641 (4)	0.6421 (4)	0.5132 (3)	0.0373 (8)
H2A	0.5502	0.6326	0.5399	0.056*
H2B	0.3912	0.5924	0.5378	0.056*
H2C	0.4837	0.7257	0.5412	0.056*
C3	0.2929 (4)	0.6733 (4)	0.2497 (3)	0.0396 (9)

H3A	0.2375	0.6994	0.2876	0.059*
H3B	0.2307	0.6166	0.1782	0.059*
H3C	0.3646	0.7424	0.2409	0.059*
C4	0.7614 (4)	0.6798 (3)	0.2399 (3)	0.0297 (7)
C5	0.6643 (4)	0.6721 (4)	0.1461 (3)	0.0433 (10)
H5	0.5856	0.6861	0.1506	0.052*
C6	0.6811 (6)	0.6443 (6)	0.0462 (4)	0.0610 (14)
H6	0.6148	0.6405	-0.0170	0.073*
C7	0.7947 (5)	0.6219 (5)	0.0383 (3)	0.0516 (11)
H7	0.8058	0.6026	-0.0304	0.062*
C8	0.8919 (5)	0.6278 (4)	0.1304 (4)	0.0430 (9)
H8	0.9689	0.6115	0.1252	0.052*
C9	0.8754 (4)	0.6579 (3)	0.2309 (3)	0.0355 (8)
Н9	0.9430	0.6635	0.2942	0.043*
C10	-0.0932 (4)	0.3826 (3)	0.2475 (3)	0.0322 (7)
C11	-0.0850 (5)	0.3461 (4)	0.1446 (3)	0.0444 (10)
H11	0.0032	0.3562	0.1372	0.053*
C12	-0.2058(6)	0.2946 (5)	0.0527 (4)	0.0562 (12)
H12	-0.2001	0.2691	-0.0170	0.067*
C13	-0.3337 (6)	0.2812 (5)	0.0639 (4)	0.0595 (13)
H13	-0.4159	0.2462	0.0014	0.071*
C14	-0.3430(5)	0.3180 (4)	0.1645 (4)	0.0512 (11)
H14	-0.4314	0.3085	0.1711	0.061*
C15	-0.2241(4)	0 3688 (4)	0 2559 (3)	0.0391 (9)
H15	-0.2312	0 3946	0 3250	0.047*
C16	0 9824 (4)	1 0236 (3)	0.2651 (3)	0.0314 (7)
H16	0.9017	0.9615	0.2010	0.038*
C17	1 0365 (5)	1 1398 (4)	0.2371 (3)	0.0406 (9)
H17A	1 1137	1 2033	0.3008	0.049*
H17B	0.9597	1 1641	0.2179	0.049*
C18	1 0900 (5)	1 1238 (4)	0.1419 (4)	0.0465(10)
H18A	1 1312	1 2012	0.1279	0.056*
H18B	1.0099	1.2012	0.0761	0.056*
C19	1 2011 (5)	1.0074	0.1639 (4)	0.030 0.0470(10)
H19A	1 2276	1.0617	0.0984	0.0470(10)
H10R	1.2270	1.1377	0.0237	0.056*
C20	1.2004	0.9626 (4)	0.2237 0.1041 (4)	0.030
H20A	1.1408 (4)	0.9020 (4)	0.1941(4) 0.2122	0.0438(9)
H20R	1.2227	0.9371	0.2122	0.053*
C21	1.0078	0.8790	0.2915 (3)	0.0376 (8)
U21	1.0507 (4)	0.0053	0.2010 (5)	0.0370 (8)
H21A H21D	1.0390	0.9033	0.3089	0.045*
C22	1.1770	1.0406	0.3337 0.2494(2)	0.043°
U22	0.8128 (4)	1.0751 (5)	0.3464 (3)	0.0323 (8)
C22	0.0440 0.7822 (4)	1.1342	0.3349	0.039°
U23	0.7033 (4)	1.0003 (4)	0.4331 (3)	0.0373 (9)
1123A H22B	0.7507	1.0119	0.4/1/	0.047*
1125D C24	0.6649 (4)	1.1471	0.3144	0.047
U24	0.0048 (4)	1.1239 (4)	0.4461 (4)	0.0472(10)
п24А	0.0941	1.2032	0.4307	0.03/**

H24B	0.6447	1.1319	0.5171	0.057*
C25	0.5317 (4)	1.0355 (4)	0.3547 (4)	0.0499 (11)
H25A	0.4982	0.9577	0.3690	0.060*
H25B	0.4568	1.0626	0.3497	0.060*
C26	0.5605 (4)	1.0211 (4)	0.2482 (4)	0.0493 (11)
H26A	0.5843	1.0969	0.2302	0.059*
H26B	0.4745	0.9591	0.1897	0.059*
C27	0.6824 (4)	0.9860 (4)	0.2541 (3)	0.0377 (8)
H27A	0.6544	0.9057	0.2632	0.045*
H27B	0.7035	0.9833	0.1856	0.045*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	0.02108 (13)	0.03255 (14)	0.03159 (14)	0.01278 (10)	0.00933 (9)	0.01115 (9)
P1	0.0195 (4)	0.0280 (4)	0.0322 (4)	0.0092 (4)	0.0066 (3)	0.0106 (3)
P2	0.0206 (4)	0.0297 (5)	0.0366 (5)	0.0116 (4)	0.0107 (3)	0.0121 (4)
01	0.0219 (12)	0.0349 (13)	0.0415 (14)	0.0131 (11)	0.0104 (10)	0.0156 (11)
02	0.0234 (13)	0.0372 (14)	0.0439 (15)	0.0105 (11)	0.0067 (11)	0.0213 (12)
03	0.0209 (11)	0.0320 (13)	0.0333 (13)	0.0073 (10)	0.0059 (9)	0.0086 (10)
O4	0.0254 (12)	0.0364 (14)	0.0504 (16)	0.0141 (11)	0.0181 (11)	0.0146 (12)
05	0.0296 (13)	0.0310 (13)	0.0426 (14)	0.0128 (11)	0.0144 (11)	0.0134 (11)
O6	0.0243 (12)	0.0317 (13)	0.0379 (13)	0.0132 (11)	0.0100 (10)	0.0138 (10)
Ν	0.0240 (14)	0.0287 (16)	0.0314 (15)	0.0098 (13)	0.0065 (12)	0.0097 (12)
C1	0.0299 (18)	0.041 (2)	0.039 (2)	0.0182 (17)	0.0129 (15)	0.0108 (16)
C2	0.038 (2)	0.045 (2)	0.038 (2)	0.0237 (18)	0.0148 (16)	0.0166 (17)
C3	0.0293 (18)	0.045 (2)	0.048 (2)	0.0175 (17)	0.0108 (16)	0.0216 (18)
C4	0.0246 (16)	0.0316 (18)	0.0337 (18)	0.0129 (15)	0.0089 (13)	0.0116 (14)
C5	0.034 (2)	0.061 (3)	0.037 (2)	0.028 (2)	0.0082 (16)	0.0097 (18)
C6	0.054 (3)	0.100 (4)	0.036 (2)	0.048 (3)	0.008 (2)	0.013 (2)
C7	0.057 (3)	0.074 (3)	0.034 (2)	0.036 (3)	0.0198 (19)	0.014 (2)
C8	0.042 (2)	0.049 (2)	0.049 (2)	0.029 (2)	0.0184 (18)	0.0150 (19)
C9	0.0273 (18)	0.039 (2)	0.041 (2)	0.0154 (16)	0.0094 (15)	0.0140 (16)
C10	0.0314 (18)	0.0330 (19)	0.0383 (19)	0.0183 (16)	0.0124 (15)	0.0146 (15)
C11	0.047 (2)	0.054 (3)	0.042 (2)	0.029 (2)	0.0163 (18)	0.0181 (19)
C12	0.064 (3)	0.067 (3)	0.039 (2)	0.037 (3)	0.009 (2)	0.014 (2)
C13	0.053 (3)	0.059 (3)	0.050 (3)	0.030 (3)	-0.009 (2)	0.005 (2)
C14	0.031 (2)	0.051 (3)	0.063 (3)	0.021 (2)	0.0031 (19)	0.009 (2)
C15	0.0289 (18)	0.042 (2)	0.045 (2)	0.0182 (17)	0.0095 (16)	0.0103 (17)
C16	0.0270 (17)	0.0316 (18)	0.0313 (17)	0.0097 (15)	0.0087 (14)	0.0080 (14)
C17	0.047 (2)	0.036 (2)	0.044 (2)	0.0195 (19)	0.0187 (18)	0.0167 (17)
C18	0.055 (3)	0.046 (2)	0.044 (2)	0.021 (2)	0.025 (2)	0.0191 (19)
C19	0.039 (2)	0.052 (3)	0.049 (2)	0.016 (2)	0.0211 (19)	0.015 (2)
C20	0.035 (2)	0.046 (2)	0.050 (2)	0.0188 (19)	0.0157 (18)	0.0097 (19)
C21	0.0325 (19)	0.038 (2)	0.043 (2)	0.0164 (17)	0.0136 (16)	0.0127 (16)
C22	0.0248 (17)	0.0293 (18)	0.042 (2)	0.0122 (15)	0.0079 (14)	0.0116 (15)
C23	0.0301 (19)	0.044 (2)	0.042 (2)	0.0158 (17)	0.0132 (16)	0.0075 (17)
C24	0.033 (2)	0.047 (2)	0.058 (3)	0.0178 (19)	0.0167 (19)	0.006 (2)

C25	0.0269 (19)	0.044 (2)	0.071 (3)	0.0136 (18)	0.0155 (19)	0.005 (2)
C26	0.029 (2)	0.049 (3)	0.058 (3)	0.0165 (19)	0.0013 (18)	0.008 (2)
C27	0.0280 (18)	0.041 (2)	0.040 (2)	0.0156 (17)	0.0054 (15)	0.0096 (16)
					. ,	
Geometric paran	neters (Å, °)					
Sn—C1		2.132 (4)	С	11—H11	0.95	500
Sn—C2		2.114 (4)	С	12—C13	1.38	83 (8)
Sn—C3		2.134 (4)	С	12—H12	0.95	500
Sn—O1		2.227 (2)	С	13—C14	1.37	76 (7)
Sn—O4		2.241 (3)	С	13—Н13	0.95	500
P1—O3		1.506 (3)	С	14—C15	1.38	83 (6)
P101		1.509 (2)	С	14—H14	0.95	500
P1—O2		1.569 (3)	С	15—H15	0.95	500
P1—C4		1.803 (4)	С	16—C17	1.52	24 (5)
P2—O4		1.503 (3)	С	16—C21	1.525 (5)	
P2—O6		1.516 (3)	С	16—H16	1.00	000
P2—O5		1.578 (3)	С	17—C18	1.52	27 (6)
P2-C10		1.805 (4)	С	17—H17A	0.99	900
O2—H2		0.76 (4)	С	17—H17B	0.99	900
O5—H5A		0.94 (7)	С	18—C19	1.52	29 (6)
N—C16		1.503 (5)	С	18—H18A	0.99	900
N—C22		1.515 (5)	С	18—H18B	0.99	900
N—H10A		0.887 (19)	С	19—C20	1.51	17 (6)
N—H10B		0.95 (4)	С	19—H19A	0.99	900
C1—H1A		0.9800	С	19—H19B	0.99	900
C1—H1B		0.9800	С	20—C21	1.53	34 (6)
C1—H1C		0.9800	С	20—H20A	0.99	900
C2—H2A		0.9800	С	20—H20B	0.99	900
C2—H2B		0.9800	С	21—H21A	0.99	900
C2—H2C		0.9800	С	21—H21B	0.99	900
С3—НЗА		0.9800	С	22—C27	1.51	17 (5)
C3—H3B		0.9800	С	22—C23	1.52	22 (5)
С3—НЗС		0.9800	С	22—H22	1.00	000
C4—C5		1.393 (5)	С	23—C24	1.52	21 (5)
C4—C9		1.395 (5)	С	23—H23A	0.99	900
C5—C6		1.385 (6)	С	23—H23B	0.99	900
C5—H5		0.9500	С	24—C25	1.52	28 (6)
C6—C7		1.390 (7)	С	24—H24A	0.99	900
С6—Н6		0.9500	С	24—H24B	0.99	900
С7—С8		1.386 (6)	С	25—C26	1.51	17 (7)
С7—Н7		0.9500	С	25—H25A	0.99	900
С8—С9		1.395 (6)	С	25—H25B	0.99	900
C8—H8		0.9500	С	26—C27	1.53	39 (6)
С9—Н9		0.9500	С	26—H26A	0.99	900
C10-C11		1.399 (5)	С	26—H26B	0.99	900
C10—C15		1.401 (5)	С	27—H27A	0.99	900
C11—C12		1.398 (6)	С	27—H27B	0.99	900
C2—Sn—C1		121.15 (15)	C	12—С13—Н13	119	.7

C2—Sn—C3	122.89 (16)	C13—C14—C15	120.1 (4)
C1—Sn—C3	115.97 (16)	C13—C14—H14	119.9
C2—Sn—O1	88.92 (13)	C15-C14-H14	119.9
C1—Sn—O1	91.77 (12)	C14—C15—C10	120.6 (4)
C3—Sn—O1	89.14 (13)	C14—C15—H15	119.7
C2—Sn—O4	92.68 (13)	C10-C15-H15	119.7
C1—Sn—O4	86.78 (13)	N—C16—C17	110.9 (3)
C3—Sn—O4	90.59 (13)	N—C16—C21	109.1 (3)
O1—Sn—O4	178.24 (9)	C17—C16—C21	111.2 (3)
O3—P1—O1	115.48 (15)	N—C16—H16	108.5
O3—P1—O2	110.97 (15)	С17—С16—Н16	108.5
O1—P1—O2	107.81 (15)	C21-C16-H16	108.5
O3—P1—C4	108.23 (15)	C16—C17—C18	110.1 (3)
O1—P1—C4	107.03 (15)	С16—С17—Н17А	109.6
O2—P1—C4	106.94 (16)	C18—C17—H17A	109.6
O4—P2—O6	115.57 (15)	С16—С17—Н17В	109.6
O4—P2—O5	108.23 (15)	C18—C17—H17B	109.6
O6—P2—O5	110.03 (15)	H17A—C17—H17B	108.2
O4—P2—C10	107.22 (17)	C17—C18—C19	111.8 (4)
O6—P2—C10	108.73 (16)	C17-C18-H18A	109.3
O5—P2—C10	106.67 (16)	C19—C18—H18A	109.3
P1—O1—Sn	132.28 (15)	C17—C18—H18B	109.3
P1—O2—H2	125 (5)	C19-C18-H18B	109.3
P2—O4—Sn	136.69 (16)	H18A—C18—H18B	107.9
Р2—О5—Н5А	110 (4)	C20—C19—C18	111.4 (4)
C16—N—C22	117.5 (3)	С20—С19—Н19А	109.3
C16—N—H10A	107 (3)	C18—C19—H19A	109.3
C22—N—H10A	109 (3)	С20—С19—Н19В	109.3
C16—N—H10B	114 (2)	C18—C19—H19B	109.3
C22—N—H10B	106 (2)	H19A—C19—H19B	108.0
H10A—N—H10B	102 (4)	C19—C20—C21	110.7 (3)
Sn—C1—H1A	109.5	C19—C20—H20A	109.5
Sn—C1—H1B	109.5	C21—C20—H20A	109.5
H1A—C1—H1B	109.5	С19—С20—Н20В	109.5
Sn—C1—H1C	109.5	С21—С20—Н20В	109.5
H1A—C1—H1C	109.5	H20A—C20—H20B	108.1
H1B—C1—H1C	109.5	C16—C21—C20	109.7 (3)
Sn—C2—H2A	109.5	C16—C21—H21A	109.7
Sn—C2—H2B	109.5	C20—C21—H21A	109.7
H2A—C2—H2B	109.5	C16—C21—H21B	109.7
Sn—C2—H2C	109.5	C20—C21—H21B	109.7
H2A—C2—H2C	109.5	H21A—C21—H21B	108.2
H2B—C2—H2C	109.5	N—C22—C27	111.3 (3)
Sn—C3—H3A	109.5	N—C22—C23	108.1 (3)
Sn—C3—H3B	109.5	C27—C22—C23	111.6 (3)
H3A—C3—H3B	109.5	N—C22—H22	108.6
Sn—C3—H3C	109.5	C27—C22—H22	108.6
H3A—C3—H3C	109.5	C23—C22—H22	108.6
H3B—C3—H3C	109.5	C24—C23—C22	110.4 (3)

C5—C4—C9	118.5 (3)	C24—C23—H23A	109.6
C5—C4—P1	120.5 (3)	С22—С23—Н23А	109.6
C9—C4—P1	121.0 (3)	С24—С23—Н23В	109.6
C6—C5—C4	120.8 (4)	С22—С23—Н23В	109.6
С6—С5—Н5	119.6	H23A—C23—H23B	108.1
С4—С5—Н5	119.6	C23—C24—C25	110.5 (4)
C5—C6—C7	120.1 (4)	C23—C24—H24A	109.5
С5—С6—Н6	119.9	C25—C24—H24A	109.5
С7—С6—Н6	119.9	C23—C24—H24B	109.5
C8—C7—C6	120.1 (4)	C25—C24—H24B	109.5
С8—С7—Н7	120.0	H24A—C24—H24B	108.1
С6—С7—Н7	120.0	C26—C25—C24	110.8 (4)
С7—С8—С9	119.4 (4)	С26—С25—Н25А	109.5
С7—С8—Н8	120.3	C24—C25—H25A	109.5
С9—С8—Н8	120.3	С26—С25—Н25В	109.5
C8—C9—C4	121.1 (4)	С24—С25—Н25В	109.5
С8—С9—Н9	119.4	H25A—C25—H25B	108.1
С4—С9—Н9	119.4	C25—C26—C27	111.4 (4)
C11—C10—C15	118.6 (4)	С25—С26—Н26А	109.3
C11—C10—P2	120.5 (3)	С27—С26—Н26А	109.3
C15—C10—P2	120.9 (3)	С25—С26—Н26В	109.3
C12-C11-C10	120.3 (4)	С27—С26—Н26В	109.3
C12-C11-H11	119.8	H26A—C26—H26B	108.0
C10-C11-H11	119.8	C22—C27—C26	110.4 (3)
C13—C12—C11	119.6 (5)	С22—С27—Н27А	109.6
С13—С12—Н12	120.2	С26—С27—Н27А	109.6
C11—C12—H12	120.2	С22—С27—Н27В	109.6
C14—C13—C12	120.7 (4)	С26—С27—Н27В	109.6
C14—C13—H13	119.7	H27A—C27—H27B	108.1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2···O6 ⁱ	0.76 (4)	1.88 (4)	2.642 (4)	178 (7)
O5—H5A····O6 ⁱⁱ	0.94 (7)	1.67 (7)	2.596 (4)	169 (6)
N—H10A…O3	0.89 (2)	1.92 (2)	2.798 (4)	169 (4)
N—H10B···O3 ⁱⁱⁱ	0.95 (4)	1.83 (4)	2.759 (4)	165 (4)
	1 1 (***)	0 10 11		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Fig. 1

